
Curso de Computación: Codifi-
cando con JavaScript 2ª parte
Tariq Rashid
Traducción y adaptación de Mario del Solar Moraga1 Autores

1Profesor del Colegio Homeduca de Colina.

21 de abril de 2024

Figura 1: Los colores básicos son verde, azul y rojo.

E sta es la segunda parte del curso. Recuerda
abrir el editor de código desde el sitio web www.
codeguppy.com .

1. Mezclando Colores

Qué haremos
En este proyecto vamos a:

aprender a mezclar nuestros propios colores
ver cómo podemos calcular los colores

Ya hemos elegido colores usando nombres como ro-
sa y naranja. Ahora aprenderemos a mezclar nuestros
propios colores. Esto es como mezclar pintura para
conseguir el color que queremos. Mezclando luz roja,
verde y azul es como vemos los colores en las pantallas
de nuestros televisores, portátiles y teléfonos inteligen-
tes.
Puedes adquirir algo de experiencia creando colores en
el siguiente sitio web: https://www.w3schools.com/
colors/colors_rgb.asp

2. Comenzamos con un cı́rculo

Entra a codeguppy, ve al botón verde que dice CODE
NOW y escribe:
fill(’yellow’);
circle(400, 300, 200);
Escojamos ese mismo amarillo usando los niveles rojo,
verde y azul.
fill(255, 255, 0);
circle(400, 300, 200);
Intenta mezclar diferentes niveles de rojo, verde y azul
para cambiar el color del círculo. Recuerde mantener
los niveles entre 0 y 255.

2.1. Mezclamos colores aleatoriamente

Los niveles RGB para cualquier color son números
del 0 al 255. ¿Y si elegimos esos números al azar? Eso
significaría mezclar cantidades aleatorias de luz roja,
verde y azul para crear un color.
var r = randomNumber(0, 255);
var g = randomNumber(0, 255);
var b = randomNumber(0, 255);
fill(r, g, b);
circle(400, 300, 200);
Puede ver que estamos configurando las variables r, g
y b para que sean números aleatorios entre 0 y 255.
Estamos usando esos números en la instrucción fill()
para establecer un color. Ese color lo usaremos para
rellenar el círculo que dibujamos. No sabemos de qué
color será el círculo porque estará mezclado niveles
RGB aleatorios.
¿Qué color obtienes? Ejecute su código nuevamente
para obtener un color diferente.

www.codeguppy.com
www.codeguppy.com
https://www.w3schools.com/colors/colors_rgb.asp
https://www.w3schools.com/colors/colors_rgb.asp

Curso de Computación: Codificando con JavaScript 2ª parte

2.2. Muchı́simos colores

Escribamos una función para dibujar un círculo de
radio 50 en un lugar aleatorio del lienzo. Usaremos
nuestro código anterior para darle un color aleatorio.
También usaremos la instrucción repetir() para llamar
a esta función 50 veces y dibujar 50 círculos. Aquí hay
un código que hace esto.
repeat(50, balloon);
function balloon()
{
var r = randomNumber(0, 255);
var g = randomNumber(0, 255);
var b = randomNumber(0, 255);
var x = randomNumber(100, 700);
var y = randomNumber(100, 500);
fill(r, g, b);
circle(x, y, 50);
}
Llamé a la función balloon. Puedes ver que elegimos
números aleatorios entre 0 y 255 para la luz roja, verde
y azul.

2.3. Cambiando el rango

Hemos estado creando colores mezclando niveles
aleatorios de rojo, verde y azul. Esos niveles eran un
número entre 0 y 255. ¿Y si elegimos los niveles RGB
de un rango diferente?
var r = randomNumber(100, 255);
var g = randomNumber(100, 255);
var b = randomNumber(0, 10);
Los niveles rojo y verde se eligen entre 100 y 255. El
nivel azul se elige entre 0 y 10.

Figura 2: Caption

Probemos algunos rangos diferentes:
var r = 0;
var g = randomNumber(100, 255);
var b = randomNumber(100, 255);
Esta vez el nivel rojo está configurado para que siempre
sea 0. Los niveles verde y azul pueden estar entre 100
y 255. El resultado es un bonito conjunto de verdes y
azules que me recuerdan al mar. Ejecútalo y muestra

el resultado al profesor.

2.4. Desafı́o

Figura 3: ¿Còmo hacer este cambio de colores según altura en
la tela?

Las coordenadas (x, y) de cada círculo se utilizan
para calcular los niveles rojo, verde y azul del color de
ese círculo.

Los niveles rojo y verde son la coordenada y divi-
dida por 2.
El nivel azul es un número aleatorio entre 100
y 255. Escribe tu propio código para hacer esto.
Pruebe también sus propios cálculos de color.

3. Más repeticiones o bucles

En este proyecto vamos a:

obtener información sobre los contadores de bu-
cles
ver cómo los contadores de bucle pueden resultar
útiles como parámetros de función

3.1. Muchı́simos globos

Echa un vistazo a la figura 4 con la imagen de cua-
tro globos pequeños. El código que hizo este dibujo es
simple.
circle(100, 300, 25);
circle(150, 300, 25);
circle(200, 300, 25);
circle(250, 300, 25);
¿Puedes ver qué cambia entre cada instrucción circu-
lar? La coordenada x es 100 para el primer círculo.
Para el segundo círculo es 150. Sigue creciendo en 50
hasta llegar a 250 para el cuarto círculo.
¿Y si quisiéramos dibujar 13 globos? Podríamos escribir
13 instrucciones de circle. Sería mucho escribir y muy
aburrido. ¡Debe haber una mejor manera! ¿Podría la
repetición de instrucciones ayudarnos a evitar escribir
mucho?

Page 2 of 6

Curso de Computación: Codificando con JavaScript 2ª parte

Figura 4: Cuatro círculos en línea.

repeat(13, balloon); Es una buena idea, pero este có-
digo no funcionará porque la función balloon no sabrá
dónde dibujar cada círculo. Si repetir pudiera pasar
información a balloon, eso realmente ayudaría: podría
indicarle a la función balloon dónde dibujar cada círcu-
lo.

3.2. Repetir con extrapoderes!

Eche un vistazo a este código que muestra una nueva
forma de utilizar la repetición:
repeat(100, 700, 50, balloon);
Aquí, la instrucción de repetición mantiene un contador.
Este contador de bucle comienza en 100 y llega hasta
700, aumentando en 50 cada vez. A la función balloon
se le pasa el contador como parámetro. Entonces, la
instrucción de repetición llama a balloon(100), luego a
balloon(150), luego a balloon(200), a balloon(250),...
hasta llegar a balloon(700). Esto es realmente útil por-
que la función balloon puede usar el número como
coordenada x del círculo.
La siguiente figura ilustra lo anterior:

Figura 5: Usamos la función balloon para ubicar los círculos
en la tela.

Necesitamos escribir nuestra función balloon para acep-
tar un solo parámetro.
function balloon(x) {
circle(x, 300, 25);
}

Puede ver que la función balloon toma un parámetro,
que hemos llamado x. La función dibuja un círculo en
las coordenadas (x, 300), con radio 25. Así es como se
ve mi código.
repeat(100, 700, 50, balloon);
function balloon(x) {
circle(x, 300, 25);
}
Puedes ver que la función balloon(x) es realmente sim-
ple. Solo contiene una instrucción para circle. Fuera de
la función, solo hay una instrucción repetida. He aquí
los resultados:

Figura 6: Muchos círculos repetidos usando una función.

¡Eso funciono! Esa fue una pequeña cantidad de código
para crear estos 13 globos. Pasar información a código
repetido como este es una idea realmente poderosa.
Se utiliza en casi todas partes: en la creación de jue-
gos, arte digital, música electrónica, control de robots
y también aplicaciones para tu teléfono inteligente. ¡Es
bueno aprender y practicar!

4. Inténtalo por ti mismo

Intentemos usar el parámetro x de la función ba-
lloon(x) para decidir el tamaño del círculo. Aquí está
mi propio experimento:
circle(x, 300, x/20);
Escribe el código, ejecuta el comando y muestra al
profesor tus resultados.

4.1. Cambiando el parámetro color

Esto es lo que probé:
function balloon(x) {
fill(x/2, x/4, 128);
circle(x, 300, x/20);
}
El color se mezcla con un nivel de rojo de x/2, un
nivel de verde de x/4 y un nivel de azul establecido en
128. ¡Los resultados son bastante interesantes!

Page 3 of 6

Curso de Computación: Codificando con JavaScript 2ª parte

Figura 7: Diferentes colores y tamaños en variación regular.

5. Matemática Artı́stica

En este proyecto vamos a:

aprender sobre una función matemática simple:
la onda sinusoidal
aprender sobre una función matemática simple:
la onda sinusoidal

5.1. Dibujando funciones matemáticas

En la escuela a veces trabajamos con funciones mate-
máticas como esta: y = x+ 3. Si x = 1 entonces y = 4
y si x = 2 entonces y = 3. Esta tabla muestra y cuan-
do x va de 0 a 5: Si dibujamos puntos en todos estos

x y
0 3
1 4
2 5
3 6
4 7
5 8

Cuadro 1: Tabla de valores de x e y

(x,y) podríamos ver un patrón. Eche un vistazo a este
código. Nada de esto es nuevo, pero hablaremos de
ello a continuación.

Figura 8: Caption

Veamos primero my_maths_function.
function my_maths_function(x) {
var y = x + 3;
circle(x, y, 5);
}
Toma un parámetro x y lo usa para calcular x+3. La res-
puesta se pone en una variable y. Luego se dibuja un pe-
queño círculo en (x, y). Entonces my_maths_function
está haciendo lo que está haciendo y = x+ 3. Quere-
mos pasar a my_maths_function diferentes valores de
x.
Podemos usar la instrucción de repetición para iniciar
un contador en 0 y seguir incrementándolo en 10, has-
ta llegar a 800. Estos pueden ser todos los valores de
x pasados a my_maths_function.
repeat(0, 800, 10, my_maths_function);
Ejecute el código para ver qué patrón forman esos...
círculos?.
¿Qué ocurrió? A medida que x se hace más grande y se
mueve hacia la derecha, y también se hace más grande
y se mueve hacia abajo en el lienzo. Por eso hay una
línea de puntos que se mueve hacia la derecha y hacia
abajo. Este patrón es algo aburrido. Probemos con una
función matemática diferente para ver si forma un pa-
trón más interesante: y = (x/20)2

Esta vez x se divide por 20 y la respuesta se eleva al
cuadrado. Solo es necesario cambiar una línea de có-
digo en my_maths_function.
var y = sq(x / 20);
Inténtalo y muestra tus resultados al profesor.
El camino parece una pelota lanzada desde una pared.
Comienza a caer lentamente y luego se acelera. Probe-
mos una función matemática más: y = sen(x)
Ese sen es la abreviatura de seno. Quizás lo hayas visto
en tu clase de matemáticas. No te preocupes si no lo
has visto antes, ¡solo lo usaremos para divertirnos, no
para trabajar! Cambia tu my_maths_function de esta
manera:
var y = sin(x);
Ejecute su código para ver qué patrón crea esta función
sinusoidal.

Figura 9: Resultado del código con función seno.

¿Qué pasó? Si miras de cerca, puedes ver que algo está

Page 4 of 6

Curso de Computación: Codificando con JavaScript 2ª parte

sucediendo en la parte superior del lienzo. ¿Quizás el
patrón es muy corto? Podemos hacer el patrón más
alto multiplicando sen(x) por 50.
var y = 50 * sin(x);
También cambiemos el patrón hacia abajo para que
cuando y sea 0, los puntos se dibujen en el medio del
lienzo. Esto es fácil de hacer. Simplemente sumamos
300 a la coordenada y cuando dibujamos los círculos.
circle(x, 300 + y, 5);
Su código y salida deberían verse así:

Figura 10: Resultado del código con función seno.

5.2. Inténtalo por ti mismo

Eche un vistazo al código my_maths_function nue-
vamente.
var y = 50 * sen(x);
Intente cambiar el número 50, lo que hace que la fun-
ción seno sea más alta. También intente multiplicar x
por un número diferente para hacerlo más grande.

5.3. Ondas sinusoidales para tamaños
de formas

Usemos ondas sinusoidales para decidir el tama-
ño de las formas. Eche un vistazo a este código
my_maths_function.
var size = 100 * sin(x);
rectangle(x, 300, 5, size);
Sabemos que sen(x) sube y baja como una ola. Multi-
plicarlo por 100 hace que la ola sea más alta. Hemos
puesto este número en una variable llamada tamaño.
Luego dibujamos un rectángulo en (x, 300), que se en-
cuentra en el centro del lienzo. Tiene un ancho de 5 y
una altura de talla. Su código y salida deberían verse
como en la figura 11:
¡Ese es un patrón genial! ¿Por qué los rectángulos
van por encima y por debajo de la línea media? Es
porque las ondas sinusoidales van por encima y por
debajo de cero. Estos valores positivos y negativos
significan que las alturas del rectángulo también se
vuelven positivas y negativas. Puedes ver una onda

Figura 11: Ondas senoidales dibujadas por rectángulos delga-
dos.

sinusoidal que sube y baja entre -1 y +1 aquí: https:
//www.desmos.com/calculator/hyimynd5yr
Prueba diferentes funciones sinusoidales para decidir
el tamaño de los rectángulos. Quizás quieras intentar
usar dos funciones sinusoidales juntas. Podrías sumar-
los. Incluso podrías intentar multiplicarlos. Aquí está
mi propio experimento:
var size = 100 * sin(x * 3) * sin(x * 0.5);
Ejecuta el código y muestra el resultado al profesor.

5.4. Funcione senoidales pueden mez-
clar colores

Usemos ondas sinusoidales para mezclar colores.
Eche un vistazo a este código:
var r = 255 * sq(sin(x));
var g = 0;
var b = 128;
fill(r, g, b);
La parte verde se establece en 0 y la parte azul se
establece en 128. La parte roja depende de qué es
x. Sabemos que sen(x) sube y baja como una ola.
El código eleva ese número al cuadrado y luego
multiplica la respuesta por 255. Esa se convierte en
la parte roja del color que estamos mezclando. ¿Por
qué hemos elevado al cuadrado la función seno? Esta
imagen explica por qué. La onda sinusoidal sube y baja

Figura 12: Ondas senoidales que coinciden en parte.

entre -1 y +1. Si elevamos los valores al cuadrado,
van de 0 a +1. Esto hace que sea más fácil escalar los
valores a niveles RGB. Simplemente los multiplicamos

Page 5 of 6

https://www.desmos.com/calculator/hyimynd5yr
https://www.desmos.com/calculator/hyimynd5yr

Curso de Computación: Codificando con JavaScript 2ª parte

por 255. Usemos ese color para dibujar un rectángulo
delgado a lo largo de todo el lienzo.
rect(x, 0, 10, 600);
Su código y salida deberían verse así:

Figura 13: Bellas imágenes usando la función seno.

La función seno ondulado ha mezclado una cantidad
ondulada de rojo con el color de los rectángulos
delgados. Cuando el valor del seno es alto, el nivel
de rojo es alto y obtenemos ese color rosa brillante.
Cuando el valor del seno es bajo, el nivel de rojo es
bajo y obtenemos ese color púrpura más oscuro. He
aquí mi propio experimento:
var r = 255 * sq(sin(x));
var g = 255 * sq(sin(x * 0.1));
var b = 128;
La parte roja cambia más rápido que la parte verde.
Modifica el código anterior y muestra tus resultados.

5.5. Desafı́o

¿Puedes escribir código para crear esta imagen real-
mente genial?

Figura 14: Caption

Hay 1800 puntos colocados en lugares aleatorios
del lienzo. Puedes usar un bucle para dibujarlos.

El tamaño de los puntos crece y se reduce con
la distancia desde el centro. Eso significa usar el
seno de la distancia.
El color se mezcla utilizando la distancia desde el
centro.

6. Más colores!

En este proyecto vamos a:

aprender a mezclar colores usando el modelo de
color HSB
ver cómo puede ser más útil que el modelo RGB

6.1. Pensar colores en RGB no es nada
fácil...

Elegir un color mezclando luz roja, verde y azul es
muy común. Pero no siempre es la forma más fácil.
¿Puedes calcular mentalmente los valores RGB del
amarillo? La respuesta es (255, 255, 0). Usando estos
números, ¿puedes calcular los valores RGB para un
amarillo claro o un amarillo oscuro? No es fácil. Por
suerte, se inventaron diferentes formas de elegir y
mezclar colores para hacerlo más fácil. Veremos uno a
continuación.

6.1.1. Una forma diferente de elegir colores

Eche un vistazo a la siguiente imagen de una rueda
de colores. Alrededor de la rueda podemos ver colores

Figura 15: Rueda de colores.

como rojo, verde y azul. Para elegir un color decimos
qué tan lejos está la rueda. Una buena forma de hacerlo
es utilizar el ángulo. Aquí hay unos ejemplos:

El rojo está a 0 grados
El naranja está a 45 grados
el verde está a 120 grados
El azul está a 240 grados

Otra palabra para los colores alrededor de la rueda es
tono (hue). ¿Cuál es el ángulo del tono morado?

(Fin de la segunda parte)

Page 6 of 6

	Mezclando Colores
	Comenzamos con un círculo
	Mezclamos colores aleatoriamente
	Muchísimos colores
	Cambiando el rango
	Desafío

	Más repeticiones o bucles
	Muchísimos globos
	Repetir con extrapoderes!

	Inténtalo por ti mismo
	Cambiando el parámetro color

	Matemática Artística
	Dibujando funciones matemáticas
	Inténtalo por ti mismo
	Ondas sinusoidales para tamaños de formas
	Funcione senoidales pueden mezclar colores
	Desafío

	Más colores!
	Pensar colores en RGB no es nada fácil...
	Una forma diferente de elegir colores

