

Curso de Computación: Codificando con JavaScript

2.3. Cı́rculos y cuadrados juntos

Escribe lo siguiente:
fill(’red’);
square(300, 300, 200);
circle(300, 300, 200);
¿Qué sucedió? Ahora eres libre de modificar y crear
nuevas líneas. Intenta con este tipo de líneas.
fill(’red’);
circle(300, 300, 200);
circle(300, 300, 150);
circle(300, 300, 100);
circle(300, 300, 50);
O éstas:
fill(’yellow’);
circle(400, 300, 200);
fill(’green’);
circle(200, 200, 150);
fill(’blue’);
circle(150, 400, 100);
fill(’red’);
circle(300, 300, 50);

2.4. Cambiando de lugar las figuras

Ahora usa estas líneas como inspiración para dibujar
algo que te sorprenda.
circle(200, 300, 200);
circle(300, 300, 200);
circle(400, 300, 200);
circle(500, 300, 200);

3. Números aleatorios

3.1. Tamaños aleatorios

Escribe lo siguiente:
circle(400, 300, 200);
circle(400, 300, 150);
circle(400, 300, 100);
circle(400, 300, 50);
Ahora hay cuatro círculos concéntricos ubicados en el
centro de la tela. La diferencia de esos círculos es el
radio. Ahora vamos amodificar un poco esas líneas para
que sea el computador quien escoja aleatoriamente los
tamaños de las figuras. Veamos:
noFill();
stroke(’blue’);
circle(400,300,randomNumber(200));
circle(400,300,randomNumber(200));
circle(400,300,randomNumber(200));
circle(400,300,randomNumber(200));
El comando noFill sirve para dejar en blanco los círculos
y el comando stroke(’blue’); es para dar el color al
conjunto de figuras.

3.2. Colores Aleatorios

Hagamos que nuestra computadora elija colores, no
solo tamaños. Eche un vistazo a este código:
fill(’orange’);
circle(400, 300, 300);
fill(’yellow’);
circle(400, 300, 200);
Ejecute el código y verá que dibuja un pequeño círculo
amarillo sobre un círculo naranja grande. Para ello
necesitamos una lista de colores para elegir. Para codi-
ficar una lista de cosas las ponemos entre corchetes [].
Aquí hay una lista de tres colores:
fill(’orange’);
circle(400, 300, 300);
fill(random([’red’, ’purple’, ’green’]));
circle(400, 300, 200);
Ejecute el código nuevamente varias veces. ¿Puedes
conseguir todos los colores?

3.3. Desafı́o!

Usa lo que has aprendido para dibujar cuatro círculos
donde:

la ubicación es un lugar aleatorio en el lienzo
el tamaño es un número aleatorio
el color se elige aleatoriamente de una lista de
colores

4. Variables simples

Qué haremos En este proyecto vamos a:

aprender cómo las variables pueden recordar nú-
meros
ver cómo las variables pueden ser útiles

4.1. Tres cı́rculos

Comencemos el nuevo programa con tres círculos
simples.
circle(200, 200, 25);
circle(200, 250, 25);
circle(200, 300, 25);
¿Puedes ver la diferencia entre estos tres círculos? La
coordenada x permanece igual en 200. La coordenada
y comienza en 200 y aumenta en 50 para cada nuevo
círculo. Ejecute el código para ver qué sucede. ¡Ajá!
Los tres círculos parecen una cadena. Están en una
línea vertical porque solo cambia la coordenada y.

4.2. Dibuja la cadena en lugares aleato-
rios

¿Cómo dibujaríamos la línea de círculos en un lugar
aleatorio?. Ya hemos utilizado la instrucción random-
Number para elegir una ubicación aleatoria en el lienzo.

Page 2 of 6

Curso de Computación: Codificando con JavaScript

Figura 2: Dibuja esta figura en JavaScript.

Eche un vistazo a este código. Utiliza randomNumber
para seleccionar números para las coordenadas x e y.
circle(random(800), randomNumber(600), 25);
circle(random(800), randomNumber(600), 25);
circle(random(800), randomNumber(600), 25);
Ejecute el código para comprobar que funciona.
Ese código no hizo lo que queríamos. ¿Puedes ver por
qué?
No funciona porque todos los círculos están dibujados
en ubicaciones aleatorias. Nuestro código anterior no
hacía eso. Mire nuevamente ese código anterior:
circle(400, 300, 25);
circle(400, 350, 25);
circle(400, 400, 25);
Podemos ver que las coordenadas x no son totalmente
aleatorias. se mantienen lo mismo para todos los círcu-
los. También podemos ver que las coordenadas y no
son totalmente aleatorias. Ellos aumentan en pasos de
50 desde el primer círculo. Eso significa que debemos
elegir una ubicación aleatoria sólo para el primer círcu-
lo.
También debemos recordar esa ubicación para poder
dibujar los otros dos círculos al lado. Podemos pedirle a
nuestra computadora que recuerde un número usando
una variable. Hablaremos de variables a continuación.

5. Usando Variables

Las variables son como cuadros en los que podemos
poner números. La figura 3 muestra una variable lla-
mada x. Puedes ver que estamos poniendo el número
10 dentro. Siempre que usemos x en nuestro código,
nuestra computadora buscará dentro del cuadro y usa-
rá el número 10. Eche un vistazo a este nuevo código.
¿Puedes averiguar qué hace?

Figura 3: Ejemplo de variable.

var x = randomNumber(800);
var y = randomNumber(600);
circle(x, y, 25);
circle(x, y + 50, 25);
circle(x, y + 100, 25);
Estamos creando una nueva variable x y colocando
un número aleatorio entre 0 y 800 dentro de ella. No
podemos adivinar qué número será. Sólo sabemos que
estará entre 0 y 800. Estamos creando otra variable
llamada y y poniendo un número aleatorio entre 0 y
600 dentro de él.
¿Qué crees que hará el primer comando circular círcu-
lo(x, y, 25)? ¿Qué crees que hará el comando del se-
gundo círculo círculo (x, y + 50, 25)? Pruebe el código
usted mismo y vea qué sucede. Deberías obtener una
cadena de tres círculos, en algún lugar del lienzo.
La primera instrucción de círculo (x, y, 25) utiliza los
números aleatorios que se colocaron dentro de las va-
riables x e y. La siguiente instrucción de círculo (x, y +
50, 25) también usa los mismos números que se colo-
caron dentro de x e y. Ejecute el código nuevamente.
La cadena de círculos estará en un lugar diferente. Esto
se debe a que la ubicación del primer círculo se elige
al azar. ¡Buen trabajo por haber llegado tan lejos!

6. Progresando

6.1. Funciones simples

En este proyecto vamos a:

aprender a empaquetar código útil como una fun-
ción
ver cómo las funciones pueden ser útiles

En el último proyecto aprendimos a usar variables
para dibujar un grupo de formas en cualquier lugar del
lienzo. Echa un vistazo a esta imagen que muestra una
flor hecha de círculos. ¿Dónde está el centro del círculo
amarillo? Puedes ver en la imagen que está en (x, y).
Estamos usando letras en lugar de números. ¿Dónde
está el círculo rojo inferior? Está un poco más abajo
del círculo amarillo. Al mirar la imagen, puedes ver
que está en (x, y + 50).
Si el centro del círculo amarillo está en (x, y), enton-
ces podemos calcular los centros. de todos los círculos
rojos:

Page 3 of 6

Curso de Computación: Codificando con JavaScript

el círculo rojo superior está en (x, y - 50)
el círculo rojo inferior está en (x, y + 50)
el círculo rojo de la derecha está en (x + 50, y)
el círculo rojo de la izquierda está en (x - 50, y)

Si configuramos x en 100 y y en 100, entonces la flor
debería dibujarse cerca de la parte superior izquierda
del lienzo, como antes. Si establecemos x en 400 y y en
300, entonces la flor debería dibujarse en el medio del
lienzo. Podemos establecer xey en cualquier ubicación
del lienzo, y la flor se dibujará allí. Aquí hay un código
para dibujar esa flor en (x, y).
var x = 400;
var y = 300;
fill(’yellow’);
circle(x, y, 50);
fill(’red’);
circle(x, y - 50, 25);
circle(x + 50, y, 25);
circle(x, y + 50, 25);
circle(x - 50, y, 25);
Al comienzo del código configuramos x en 400 e y
en 300. Puedes ver las instrucciones para los círculos
amarillo y rojo, usa x e y. en lugar de números. Cuando
nuestra computadora vea la x en el círculo (x, y, 50),
tomará el número dentro de la variable x y lo usará.
Lo mismo sucederá con y. Entonces el círculo (x, y,
50) se convertirá en círculo (400, 300, 50). Ejecute el
código para comprobar que dibuja la flor en el medio
del lienzo en (400.300).

6.2. Dibuja la flor en un lugar aleatorio

Cambiemos el código para dibujar la flor en un lugar
aleatorio del lienzo. Solo necesitamos cambiar los nú-
meros en los que están configurados x e y. En lugar de
que nosotros elijamos un número, dejamos que nuestra
computadora elija uno por nosotros.
var x = randomNumber(800);
var y = randomNumber(600);
Ejecute el código para comprobar que la flor esté dibu-
jada en otro lugar.

Figura 4: Una flor hecha de círculos.

Figura 5: Bien! Ha funcionado.

6.3. Dibujar muchas flores

Hagamos algo nuevo y emocionante: ¡dibujemos 5
flores! ¿Cómo dibujamos 5 flores? Podríamos escribir
todo ese código nuevamente 5 veces, pero sería muy
largo y aburrido. Sería mejor si le enseñáramos a nues-
tra computadora a dibujar una flor solo una vez y luego
le pidiéramos que la dibujara muchas veces. Sería co-
mo una receta de tarta de chocolate. Lo escribimos
una vez y lo usamos muchas veces. También podemos
escribir recetas en código. Se llaman funciones. Eche
un vistazo a este código.

function my_flower()
{
var x = randomNumber(800);
var y = randomNumber(600);
fill(’yellow’);
circle(x, y, 50);
fill(’red’);
circle(x, y - 50, 25);
circle(x + 50, y, 25);
circle(x, y + 50, 25);
circle(x - 50, y, 25);
}
Si miras con atención, verás que es el mismo código
que ya escribimos para dibujar una flor en un lugar
aleatorio del lienzo. La única diferencia es que tenemos
la función my_flower() { en la cima, y } en el fondo.
Lo que hace este nuevo código es crear una receta
o función llamada my_flower. Las instrucciones de
la receta están dentro de las llaves {y}. Escriba este
código para crear la función my_flower. Si ejecuta este
código obtendrá un lienzo vacío.
Esto se debe a que creamos la receta my_flower, pero
aún no la hemos usado. Para usarlo, simplemente
escribimos el nombre de la función my_flower fuera
de la función.
my_flower();

No olvide los corchetes vacíos () después del nombre
de la función. Ejecute el código para comprobar que el
uso de nuestra nueva instrucción my_flower realmente

Page 4 of 6

Curso de Computación: Codificando con JavaScript

funciona.
My_flower se cae del borde del lienzo. El tuyo estará
en alguna parte más en el lienzo.

6.4. Iterando funciones

¿Qué crees que pasará si escribimos cinco instruccio-
nes my_flower una tras otra?
my_flower();
my_flower();
my_flower();
my_flower();
my_flower();

Inténtalo!

6.5. Desafı́o

Intenta dibujar 10 flores de círculos de manera que
los colores sean aleatorios.

7. Repitiendo instrucciones

En este proyecto vamos a:

aprender a repetir instrucciones
Vea cómo la repetición puede hacer mucho trabajo
sin escribir mucho código.

7.1. Comenzando con una Función sim-
ple

Comencemos este proyecto con una función real-
mente simple que dibuja un pequeño círculo lleno de
un color elegido al azar de una lista. Eche un vistazo a
este código. Hablaremos de ello a continuación.
function bubble()
{ var x = randomNumber(200, 600);
var y = randomNumber(200, 400);
var r = randomNumber(15, 50);
fill(random([’pink’, ’yellow’, ’lightgreen’]));
circle(x, y, r);
}
Puedes ver que hemos elegido números aleatorios para
x e y. Ésta será la ubicación del círculo.
¿Viste que la instrucción RandomNumber tiene dos
números entre paréntesis? Antes sólo tenía uno. La
instrucción ahora elige un número aleatorio que se
encuentra entre esos dos números. Entonces Random-
Number(200, 600) elige un número entre 200 y 600.
También puedes ver que r se establece en un número
aleatorio entre 15 y 50. Este será el radio del círculo.
También elegimos un color aleatorio de una lista de
rosa, amarillo y verde claro. Llamemos a esta función
de burbuja cinco veces. Llamar a una función es lo
que dicen los codificadores cuando usan una función.

Ejecute el código para ver cinco burbujas de colores.

Figura 6: Estas burbujas parecen muy dulces!

7.2. Dibujando 20 burbujas

Ese dibujo necesita más burbujas. Dibujemos 20.
Podríamos repetir la instrucción de la burbuja 20 veces,
pero eso resultaría agotador. Debe haber una mejor
manera. ¡Hay una mejor manera! Las computadoras
son muy buenas para repetir cosas y no se aburren.
Eche un vistazo a este nuevo código:
repeat(20, bubble);

¿Puedes adivinar qué hace? La instrucción de repeti-
ción repite una función. Le decimos qué función repetir.
Aquí le hemos dicho que repita la función de burbuja.
Ese número 20 le dice a repetir que llame a la función
burbuja 20 veces. Reemplace sus cinco llamadas a la
burbuja con esta única instrucción de repetición.
Cambia tu código para dibujar 200 burbujas. ¡Sí, 200!
Cambié la función de burbuja para hacerlas más pe-
queñas. También aumenté el rango de números entre
los que se eligen x e y, de modo que se use más lienzo
para dibujar.
var x = randomNumber(100, 700);
var y = randomNumber(100, 500);
var size = randomNumber(10, 25);
Esto es lo que dibuja mi código:

Figura 7: Burbujas aleatorias.

Page 5 of 6

Curso de Computación: Codificando con JavaScript

7.3. Desafı́o!

Si miras de cerca la figura 8 puedes ver que está
formado por muchas pequeñas gotas. ¡Hay 200 gotas,
pero no es necesario contarlas! Cada gota tiene un
pequeño círculo amarillo encima de un círculo más
grande rojo, verde o azul. ¿Puedes escribir código para
hacer un dibujo similar?

Figura 8: Desafío en JavaScript.

8. Más Funciones

En este proyecto vamos a:

aprender a pasar información a funciones
vea cómo esto hace que las funciones sean aún
más útiles

8.1. Dibujando flores en el lugar que
queremos

Ya hemos aprendido cómo escribir una función-
código que podemos usar una y otra vez. Aquí está la
función my_flower que escribimos para dibujar una
flor.
function my_flower()
{ var x = randomNumber(800);
var y = randomNumber(600);
fill(’yellow’);
circle(x, y, 500);
fill(’red’);
circle(x, y - 50, 25);
circle(x + 50, y, 25);
circle(x, y + 50, 25);
circle(x - 50, y, 25);
}
No sabemos dónde dibujará una flor. Esto se debe a
que el centro de la flor (x, y) se elige al azar.
Sería bueno si pudiéramos decirle a nuestra función
exactamente dónde dibujar la flor.
Eso significa que necesitamos una manera de decirle

a nuestra función my_flower cuáles deberían ser x e
y. Eche un vistazo a este nuevo código. Es igual que
antes pero con algunos pequeños cambios.
¿Puedes ver las diferencias?

function my_flower(x,y)
{
fill(’yellow’);
circle(x, y, 50);
fill(’red’);
circle(x, y - 50, 25);
circle(x + 50, y, 25);
circle(x, y + 50, 25);
circle(x - 50, y, 25);
}
Hay dos diferencias:

el nombre de la función ahora tiene (x, y) entre
paréntesis.
Eliminamos el código para elegir x e y al azar.

Cambiar el nombre de my_flower() a my_flower(x, y)
significa que Ahora es necesario indicarle a la función
qué x e y usar. Así es como le decimos a my_flower qué
queremos que sean x e y:
my_flower(100, 200);

Esto llama a my_flower, como antes, pero pasa el
número 100 a la función para usarla como x. También
pasa 200 para usarse como y.
¡Vamos a intentarlo! Así es como se ve mi código y el
resultado, una flor dibujada en (100, 200). Le hemos

Figura 9: Flor dibujada en (100,200)

dicho a la función dónde dibujar la flor pasándole in-
formación. Esto se llama pasar parámetros.
La palabra parámetros significa la información que le
das a una función cuando la usas. Podemos decir que
la función my_flower(x, y) toma 2 parámetros, x e y.
Pruebe su nueva función my_flower(x, y) con diferen-
tes parámetros. Intenta dibujar varias flores con dife-
rentes parámetros para cada una. Mira si puedes hacer
un patrón de flores. Aquí hay un patrón que hice.
(Fin de la primera parte)

Page 6 of 6

	Comenzamos con un círculo
	Círculos y cuadrados juntos
	Cambiando de lugar las figuras

	Números aleatorios
	Tamaños aleatorios
	Colores Aleatorios
	Desafío!

	Variables simples
	Tres círculos
	Dibuja la cadena en lugares aleatorios

	Usando Variables
	Progresando
	Funciones simples
	Dibuja la flor en un lugar aleatorio
	Dibujar muchas flores
	Iterando funciones
	Desafío

	Repitiendo instrucciones
	Comenzando con una Función simple
	Dibujando 20 burbujas
	Desafío!

	Más Funciones
	Dibujando flores en el lugar que queremos

